Bounds and Approximations for Sums of Dependent Log-Elliptical Random Variables
نویسندگان
چکیده
Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a,b) have studied convex bounds for a sum of dependent random variables and applied these to sums of log-normal random variables. In particular, they have shown how these convex bounds can be used to derive closed-form approximations for several of the risk measures of such a sum. In this paper we investigate to which extent their general results on convex bounds can also be applied to sums of log-elliptical random variables which incorporate sums of log-normals as a special case. Firstly, we show that unlike the log-normal case, for general sums of log-ellipticals the convex lower bound does no longer result in closed form approximations for the different risk measures. Secondly, we demonstrate how instead the weaker stop-loss order can be used to derive such closed form approximations. We also present numerical examples to show the accuracy of the proposed approximations.
منابع مشابه
Convex Order Bounds for Sums of Dependent Log-Elliptical Random Variables
In this paper, we construct upper and lower convex order bounds for the distribution of a sum of non-independent log-elliptical random variables. These bounds are applications of the ideas developed in Kaas, Dhaene & Goovaerts (2000). The class of multivariate log-elliptical random variables is an extension of the class of multivariate log-normal random variables. Hence, the results presented h...
متن کاملStrong Laws for Weighted Sums of Negative Dependent Random Variables
In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.
متن کاملAsymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables
Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...
متن کاملThe Almost Sure Convergence for Weighted Sums of Linear Negatively Dependent Random Variables
In this paper, we generalize a theorem of Shao [12] by assuming that is a sequence of linear negatively dependent random variables. Also, we extend some theorems of Chao [6] and Thrum [14]. It is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of...
متن کاملStrong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables
We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008